High Dimensional Multivariate Regression and Precision Matrix Estimation via Nonconvex Optimization

نویسندگان

  • Jinghui Chen
  • Quanquan Gu
چکیده

We propose a nonconvex estimator for joint multivariate regression and precision matrix estimation in the high dimensional regime, under sparsity constraints. A gradient descent algorithm with hard thresholding is developed to solve the nonconvex estimator, and it attains a linear rate of convergence to the true regression coefficients and precision matrix simultaneously, up to the statistical error. Compared with existing methods along this line of research, which have little theoretical guarantee, the proposed algorithm not only is computationally much more efficient with provable convergence guarantee, but also attains the optimal finite sample statistical rate up to a logarithmic factor. Thorough experiments on both synthetic and real datasets back up our theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Reduced Rank Regression With Nonconvex Regularization

In this paper, the estimation problem for sparse reduced rank regression (SRRR) model is considered. The SRRR model is widely used for dimension reduction and variable selection with applications in signal processing, econometrics, etc. The problem is formulated to minimize the least squares loss with a sparsity-inducing penalty considering an orthogonality constraint. Convex sparsity-inducing ...

متن کامل

A Nonconvex Optimization Framework for Low Rank Matrix Estimation

We study the estimation of low rank matrices via nonconvex optimization. Compared with convex relaxation, nonconvex optimization exhibits superior empirical performance for large scale instances of low rank matrix estimation. However, the understanding of its theoretical guarantees are limited. In this paper, we define the notion of projected oracle divergence based on which we establish suffic...

متن کامل

Variable Selection for High Dimensional Multivariate Outcomes.

We consider variable selection for high-dimensional multivariate regression using penalized likelihoods when the number of outcomes and the number of covariates might be large. To account for within-subject correlation, we consider variable selection when a working precision matrix is used and when the precision matrix is jointly estimated using a two-stage procedure. We show that under suitabl...

متن کامل

Think Global, Act Local When Estimating a Sparse Precision Matrix

Substantial progress has been made in the estimation of sparse high dimensional precision matrices from scant datasets. This is important because precision matrices underpin common tasks such as regression, discriminant analysis, and portfolio optimization. However, few good algorithms for this task exist outside the space of L1 penalized optimization approaches like GLASSO. This thesis introdu...

متن کامل

Strong Oracle Optimality of Folded Concave Penalized Estimation By

Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016